Cílem kurzu je poskytnout ucelený úvod do hlubokých neuronových sítí, které dosahují vynikající úspěšnosti při zpracování a generování obrázků, textu a řeči. Kurz se zaměřuje jak na teorii od základů po nejnovější pokroky, tak na praktické implementace v jazyce Python a frameworku PyTorch (studenti implementují a trénují hluboké neuronové sítě provádějící klasifikaci obrazu, segmentaci obrazu, detekci objektů, morfologické značkování, lemmatizaci, rozpoznávání řeči, porozumění čtenému textu a generování obrázků). Jsou vyžadovány základní znalosti algebry a jazyka Python, ale není nutná předchozí znalost umělých neuronových sítí; výhodou je základní znalost strojového učení. Studenti pracují buď samostatně, nebo v malých týmech na týdenních úkolech, včetně soutěžních úloh, kde je cílem dosáhnout co nejlepších výsledků z odevzdaných řešení.
The objective of this course is to provide a comprehensive introduction to deep neural networks, which have consistently demonstrated superior performance across diverse domains, notably in processing and generating images, text, and speech. The course focuses both on theory spanning from the basics to the latest advances, as well as on practical implementations in Python and PyTorch (students implement and train deep neural networks performing image classification, image segmentation, object detection, part of speech tagging, lemmatization, speech recognition, reading comprehension, and image generation). Basic Python skills are required, but no previous knowledge of artificial neural networks is needed; basic machine learning understanding is advantageous. Students work either individually or in small teams on weekly assignments, including competition tasks, where the goal is to obtain the highest performance in the class.
RNDr. Milan Straka, PhD.
Ústav formální a aplikované lingvistiky
straka@ufal.mff.cuni.cz